伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

3月22日(周三)学术报告

时间:2006-03-09

题 目: Robust Regression Shrinkage and Consistent Variable Selection via the LAD-Lasso

报告人: 王汉生(副教授)

伟易博治理学院商务统计与经济计量系

时 间: 3月22日(周三)3:30-5:00pm

地 点: GSM115

Abstract: The least absolute deviation (LAD) regression is a useful method for robust regression while the least absolute shrinkage and selection

operator (lasso) is a popular choice for shrinkage estimation and

variable selection. In this article, we attempt to combine these two

classical ideas together to produce LAD-lasso. Compared with the LAD

regression, LAD-lasso can do parameter estimation and variable selection

simultaneously. Compared with the traditional lasso, LAD-lasso is resistant to heavy-tailed errors or outliers in the response. Furthermore, with easily estimated tuning parameters, the LAD-lasso estimator enjoys the same asymptotic efficiency as the unpenalized LAD estimator obtained under the {it true} model (i.e. the oracle property). Extensive simulation studies demonstrate the satisfactory finite sample performance of LAD-lasso and a real example is analyzed for illustration purpose.

For a complete PDF file:

http://hansheng.gsm.pku.edu.cn/pdf/2006/LAD-Lasso.pdf

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】