伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

Analyzing spatial data locally

时间:2017-05-18

Statistics Seminar2017-10

Topic:Analyzing spatial data locally

Speaker:Tailen Hsing, Michael B. Woodroofe Collegiate Professor of Statistics, University of Michigan, Co-editor of Annals of Statistics

Time:Thursday, May 18, 14:00-15:00

Place:Room 217, Guanghua Building 2

Abstract:

Stationarity is a common assumption in spatial models. The justification is often that stationarity is a reasonable approximation if data are collected in a sufficiently small region. In this talk we first review various known approaches for modeling nonstationary spatial data. We then examine the notion of local stationarity in more detail. In particular, we will consider a general nonstationary spatial model whose covariance behaves like the Matern covariance locally and a corresponding inference approach for the model based on dense gridded data.

Introduction:

伟易博(中国区)官方网站

Prof. Tailen Hsing obtained his bachelor's degree in Mathematics from National Taiwan University in 1978, and his Ph.D. degree in statistics from University of North Carolina in 1984. Prof. Hsing's research interests include extreme value theory, limit theory under dependence, functional data and spatial data. Currently, his focus is on the last two areas. For functional data, he is considering the estimation of high-dimensional parameters, such as the cross covariance, that characterize dependence between functional variables. For spatial data, he is interested in the inference of spatial processes that are locally stationary, especially in the context of densely observed data.

http://dept.stat.lsa.umich.edu/~thsing/

Your participation is warmly welcomed!

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】