伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

Model Averaging PartiaL Effect (MAPLE) Estimation with Large Dimensional Data

时间:2012-02-09

Model Averaging PartiaL Effect (MAPLE) Estimation with

Large Dimensional Data

报告人:Yundong Tu(University of California)

时 间:10-11:30am,Feb.13th(Mon)

地 点:2号楼217

Abstract

This paper studies the estimation of the marginal effect of one economic variable on another in the presence of large amount of other economic variables| a problem frequently faced by applied researchers. The estimation is motivated via model uncertainty so that random components should be included to describe the economy according to the state of the world. A condition named \Conditional Mean Independence" is shown to be sufficient to identify the partial effect parameter of interest. In the case that the parameter of interest can be identified in more than one approximating model, we propose two estimators for such a parameter: generalized-method-of-moment-based model averaging partial effect (gMAPLE) estimator and entropy-based model averaging partial effect (eMAPLE) estimator. Consistency and asymptotic normality of the MAPLE estimators are established under a suitable set of conditions. Thorough simulation studies reveal that MAPLE estimators outperform factor based, variable selection based and other model averaging estimators available in the literature. An economic example is taken to illustrate the use of MAPLE estimator to evaluate the effect of inherited control on _rms' performance.Key Words: Partial Effect; Treatment Effect; Model Averaging; Bayesian Model Averaging; Jackknife Model Averaging; FOGLeSs; Variable Selection; Factor Models; InheritedControl.

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】