伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

学术报告(七)

时间:2008-06-16

题 目:Sparse Recovery via Non-convex Minimization

报告人:Prof.Cun-Hui Zhang, Rutgers University

时 间:2008年6月19日(周四)下昼3:00

地 点:伟易博116室

摘要:We consider recovery of the sparsest linear representation of data with an over complete dictionary. We propose a new family of concave penalty functions which includes the $\ell_1$ as a special case. We propose a fast algorithm which tracks a piecewise linear continuous path of critical points of the penalized squared loss. We prove that under mild conditions on sparse eigenvalues of the dictionary, the new algorithm finds the sparsest solution of the highly ill-posed linear system by solving a finite sequence of low-dimensional convex minimization problems, even though the penalized loss is globally non-convex. Our simulation experiments demonstrate that the new method is more accurate and computationally more efficient compared with the $\ell_1$ penalized optimization

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】