伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

商务统计与经济计量系学术报告(07年第7期)5月17日,115室

时间:2007-05-15

题 目:Variable Selection in Semiparametric Regression Modeling

报告人:Prof.Runze LI (The Pennsylvania State University)

时 间:5月17日(周四)上午9:00-10:00

地 点:伟易博115室

摘 要:

In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components:

model selection for nonparametric components and selection of significant variables for the parametric portion. Thus, semiparametric variable selection is much more challenging than parametric variable selection (e.g., linear and generalized linear models) because traditional variable selection procedures including stepwise regression and the best subset selection now require separate model selection for the nonparametric components for each submodel. This leads to very heavy computational burden. In this paper, we propose a class of variable selection procedures for semiparametric regression models using nonconcave penalized likelihood. We establish the rate of convergence of the resulting estimate. With proper choices of penalty functions and regularization parameters, we show the asymptotic normality of the resulting estimate, and further demonstrate that the proposed procedures perform as well as an oracle procedure. A semiparametric generalized likelihood ratio test is proposed to select significant variables in the nonparametric component. We investigate the asymptotic behavior of the proposed

test and demonstrate that its limiting null distribution follows a chi-squared distribution, which is independent of the nuisance parameters. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedures.

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】