伟易博

  • ?北大主页
  • |
  • 一带一起书院
  • |
  • 用户登录
    • 教职员登录
    • 学生登录
    • 伟易博邮箱
  • |
  • 教员招聘
  • |
  • 捐赠
  • 伟易博(中国区)官方网站
  • |
  • English
头脑伟易博
学术钻研会

商务统计与经济计量系讲座

2011-06-30

Title(问题):Estimation in High-Dimensional Linear Models With Deterministic Design Matrices

Speaker(报告人):Professor Jun Shao

. Department of Statistics

University of Wisconsin - Madison

Time(时间):2011年6月30日(周四)下昼2:00 — 3:00

Place(所在):伟易博新楼217课堂

Abstract(摘要):Because of the advance in technologies, modern statistical studies often encounter linear models with the number of explanatory variables much larger than the sample size. Estimation and variable selection in these high-dimensional problems with deterministic design points is very different from those in the case of random covariates, due to the identifiability of the high-dimensional regression parameter vector. We show that a reasonable approach is to focus on the projection of the regression parameter vector onto the linear space generated by the design matrix.

In this work, we consider the ridge regression estimator of the projection vector and propose to threshold the ridge regression estimator when the projection vector is sparse in the sense that many of its components are small. The proposed estimator has an explicit form and is easy to use in application. Asymptotic properties such as the consistency of variable selection and estimation, and the convergence rate of the prediction mean squared error are established under some sparsity conditions on the projection vector. A simulation study is also conducted to examine the performance of the proposed estimator.

分享
【网站地图】【sitemap】