ΰÒײ©

  •  Î°Òײ©Ê×Ò³
  •  ½ÌѧÏîÄ¿
    ±¾¿Æ ѧÊõ˶²© MBA EMBA ¸ß²ãÖÎÀí½ÌÓý »á¼ÆË¶Ê¿ ½ðÈÚ˶ʿ ÉÌÒµÆÊÎö˶ʿ Êý×Ö½ÌÓý ¿Î³ÌÍÆ¼ö
  •  ±±´óÖ÷Ò³
  •  Óû§µÇ¼
    ½ÌÖ°Ô±µÇ¼ ѧÉúµÇ¼ ΰÒײ©ÓÊÏä
  •  ½ÌÔ±ÕÐÆ¸  ¾èÔù
English
ΰÒײ©(ÖйúÇø)¹Ù·½ÍøÕ¾
ΰÒײ©(ÖйúÇø)¹Ù·½ÍøÕ¾

УÓѶ¯Ì¬

¾«²Ê»ØÊ×

Éî»ü²©¿¼ ËãɳÞÒ¿Õ¡ª¡ª¡°Éî¶ÈѧϰÓëͳ¼ÆÑ§ÀíÂÛ¡±×êÑлáÀֳɾÙÐÐ

ʱ¼ä£º2020-11-24

AF31

×÷ΪÐÂÒ»ÂֿƼ¼¸ïÃüºÍ¹¤ÒµÀå¸ïµÄ½¹µãÇý¶¯Á¦ £¬¡°ÖÇÄÜ»¯¡±ÒѳÉΪδÀ´¹¤ÒµµÄÉú³¤Ç÷ÊÆ¡£×÷Ϊ½üÄêÀ´È˹¤ÖÇÄÜÉú³¤×îѸÃ͵ÄÁìÓòÖ®Ò» £¬Éî¶Èѧϰ̫ͨ¹ý²ãÍøÂç»ñÈ¡·ÖÌõÀíµÄÌØÕ÷ÐÅÏ¢ £¬³ýÁËÔÚͼÏñ¡¢ÓïÒôµÈÁìÓòÀï»ñµÃÁ˽ÏÁ¿ÀֳɵÄÓ¦ÓÃÖ®Íâ £¬Ò²ÎªÍ³¼ÆÑ§ÀíÂÛµÄÑо¿Á¢Òì·­¿ªÁËÐÂµÄÆõ¿Ú¡£2020Äê11ÔÂ19ÈÕÉÏÎç £¬ÓÉΰÒײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿ÏµÖ÷ÀíµÄ¡°Éî¶ÈѧϰÓëͳ¼ÆÑ§ÀíÂÛ¡±×êÑлáÔÚ±±´óΰÒײ©ÀֳɾÙÐС£À´×Ôº£ÄÚ×ÅÃûԺУµÄËÄλÓÅÒìͳ¼ÆÑ§ÕßÓ¦Ñû¾Í¸÷×Ô×îеÄÀíÂÛЧ¹û¾ÙÐÐÁË·ÖÏíÓë̽ÌÖ £¬ÎªÏßÉÏ¡¢ÏßÏÂÅäºÏ¼ÓÈëµÄÓâ500λ¸ßУʦÉúÓëÒµ½çÈËÊ¿´øÀ´ÁËÒ»³¡¾ø¼ÑµÄÍ·ÄÔѧÊõÊ¢Ñç¡£

35268

ÏßÉÏÖ±²¥


¿ªÄ»Ê½

22FD8

Ö÷³ÖÈË ÍõººÉú Î°Òײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿Ïµ½ÌÊÚ¡¢ÏµÖ÷ÈÎ

¾Û»áÔÚΰÒײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿ÏµÖ÷ÈÎÍõººÉú½ÌÊÚµÄÖ÷³ÖÏÂÐû²¼¿ªÄ» £¬Âí»¯ÏéÊé¼Ç´ú±íѧԺÖ´Ç¡£ËûÈÈÇ鵨½Ó´ýÁËÏßÏÂÓëÏßÉϵÄʦÉúѧÕßÃǼÓÈë±¾´Î×êÑÐ £¬Åú×¢ÔÚÈ˹¤ÖÇÄܵķÉËÙÉú³¤Ï £¬Éî¶Èѧϰ×÷Ϊ´¦Öóͷ£·Ç½á¹¹»¯Êý¾ÝµÄÒ»ÖÖÊÖ¶Î £¬×ßÏò´ó¹æÄ£¹¤Òµ»¯Ó¦ÓÃÒѳÉΪ´ÓÕþ²ßµ¼Ïòµ½ÐÐÒµ¹²Ê¶µÄÒ»ÖÂÆ«Ïò¡£Îª´Ë £¬½¨ÉèÉî¶Èѧϰƽ̨ÖúÁ¦¹¤ÒµÓ¦Óà £¬¼ÓËÙÖ§³Ö¹¤ÒµÖÇÄÜ»¯ £¬Ò²ÒѾ­³ÉΪĿ½ñѧÊõ½çºÍ¸÷ÐÐÒµ×îÖËÊÖ¿ÉÈȵÄÑо¿Ó¦ÓÃÆ«Ïò £¬ÆÚ´ý¸÷ÈËÄܹ»´Ó×êÑÐÖÐÏ໥½øÒæ £¬ÓÐËùÊÕ»ñ¡£

12012

Ö´Ǽαö Âí»¯Ïé Î°Òײ©µ³Î¯Êé¼Ç


Ö÷Ö¼±¨¸æ

¡°ÈýÔªËØ¡°²ûÊÍ»úеѧϰµÄʵÖÊ

±¨¸æÎÊÌ⣺Prediction, Computation, and Representation ¡ª The Nature of Machine Learning

±¨¸æÈË£º ÕÅÖ¾»ª £¬±±¾©´óѧÊýѧ¿ÆÑ§Ñ§Ôº

D469


ÕÅÖ¾»ª½ÌÊÚÔÚ±¨¸æÖжԻúеѧϰÓëͳ¼ÆÑ§µÄÓ°ÏìÓë²î±ð¾ÙÐÐÁ˼òÒª¸ÅÊö £¬ËûÊ×ÏÈ»ØÊ×ÁËÁ½Î»ÖøÃûͳ¼ÆÑ§¼ÒLeo Breiman ÓëBradley Efron»®·ÖÔÚ¸÷×ÔÂÛÎÄ¡°Statistical Modeling: The Two Cultures¡±Óë¡°Prediction, Estimation, and Attribution¡±ÖжÔͳ¼ÆÑ§ºÍ»úеѧϰ֮¼ä½¨Ä£²î±ðµÄÏà¹ØÌÖÂÛ £¬ËµÃ÷Îú»úеѧϰµÄÉú³¤¸øÍ³¼ÆÑ§´øÀ´µÄÉî¿ÌÓ°Ïì¡£ÊÜ¡°Éî¶Èѧϰ¡±Ó롰ͳ¼ÆÑ§¡±ÕâÁ½ÖÖ½¨Ä£ÎÄ»¯²î±ðÌÖÂ󵀮ô·¢ £¬ÕŽÌÊÚÌá³öÁËÐðÊö»úеѧϰµÄÈýÒªËØ£ºPrediction, ComputationÓëRepresentation¡£ÒÔPredictionΪ×îÖÕÄ¿µÄ £¬½«Computation×÷ΪÎÊÌâÇó½âµÄ;¾¶ £¬´Ó¡°Representation¡±½Ç¶ÈÀ´Ú¹ÊÍ»úеѧϰ¡£ÕŽÌÊÚÅú×¢ £¬ÔÚComputation·½Ãæ £¬»úеѧϰÖ÷Òª¹Ø×¢·ÖÀà £¬¾ÛÀàµÈÀëÉ¢ÎÊÌâ £»³ýÁËÔõÑù»ùÓÚѵÁ·¼¯¾ÙÐÐÓÅ»¯Çó½âÍâ £¬»úеѧϰ»¹¹Ø×¢ÔõÑùÌá¸ßÔÚ²âÊÔ¼¯Éϵķº»¯ÐÔÄÜ £¬ÒÔʵÏÖÓÅ»¯Ëã·¨ºÍ·º»¯ÀíÂÛµÄÓлúͳһ¡£¶øRepresentation°üÀ¨ÎïÀí½¨Ä£ºÍÌØÕ÷ÌáÈ¡ £¬ËüµÄÉú³¤¹á´®×ÅÔõÑù½â¾ö¡°Dimensionality Curse¡±ºÍʹÓá°Dimensionality Blessing¡± £¬Éî¶ÈѧϰÔòÍêÉÆÚ¹ÊÍÁËÕâÁ½ÕßÖ®¼äµÄȨºâ¡£ÕÅÖ¾»ª½ÌÊÚÌåÏÖ £¬ËüÒ²ÊÇÆù½ñΪֹ°Ñ¡°Data Modeling Culture¡±ºÍ¡°Algorithmic Modeling Culture¡±ÈÚΪһÌåµÄ×î¼ÑÊÖÒÕ;¾¶¡£


Éî¶ÈÉ­ÁÖ¡°·­¿ªÁË¡±·Ç²ÎÉî¶ÈѧϰµÄ¡°´óÃÅ¡±

±¨¸æÎÊÌ⣺·Ç²ÎÊýÉî¶ÈѧϰÀíÂÛ³õ̽

±¨¸æÈË£º ¸ßξ £¬ÄϾ©´óѧÈ˹¤ÖÇÄÜѧԺ

CA68


¸ßξ½ÌÊڵĿÎÌâ×é½üÄêÀ´ÖÂÁ¦ÓڷDzÎÉî¶ÈѧϰµÄÑо¿ £¬Æä»ù±¾¹¹½¨ÊǷDzÎÊý»¯¡¢²»¿É΢·ÖµÄËæ»úÉ­ÁÖÄ£×Ó £¬¶ø·Ç²ÎÉî¶ÈѧϰÔÚÖî¶àʹÃüÖÐÈ¡µÃÁËÓëÉî¶ÈѧϰÏ൱µÄЧ¹û £¬ÌØÊâ¶ÔÀëÉ¢ÐÍѧϰʹÃüÍùÍùÌåÏÖ³ö¸üºÃµÄЧ¹û¡£¸ß½ÌÊڵı¨¸æÎ§ÈÆËûºÍËûµÄ¿ÎÌâ×éÔڷDzÎÉî¶Èѧϰ·½ÃæÈ¡µÃµÄÀíÂÛÆðÔ´Ï£Íû £¬×ÅÖØÏÈÈÝÁËÊÕÁ²½çµÄÑо¿ £¬²¢Ú¹ÊÍÁËÆäÔõÑùÔÚÀíÂÛÉÏÖ¸µ¼·Ç²ÎÉî¶ÈÄ£×ӵĹ¹½¨¡£¸ß½ÌÊÚÒÔ¡°Deep Forests¡±ÎªÇÐÈëµã £¬½«ÏÖÔÚµÄÉî¶ÈѧϰÊÓ×÷¶à²ã¹Å°åÉñ¾­ÍøÂç×é³É¡£Í¨Ì«¹ýÎöÆä²ãÊý¹ýÉî¶øÔì³ÉµÄѵÁ·ÄÑÌâµÄÎÊÌâ £¬¸ß½ÌÊÚÌåÏÖ¿ÉʹÓÃÒ»Á¬¿É΢µÄ¼¤»îº¯Êý£¨Relu£© £¬½ÓÄÉBPËã·¨¾ÙÐÐѵÁ·¡£Óë¹Å°å»úеѧϰҪÁìÏà±È £¬Éî¶Èѧϰ²»ÐèÒªÈ˹¤Éè¼ÆÊäÈ루ÈçͼÏñ£© £¬¶øÊÇͨ¹ýËã·¨×Ô¶¯Ñ§Ï°¡ £»ùÓÚ´Ë £¬¸ß½ÌÊÚÖ¸³ö £¬ÏÖÔÚµÄÉî²ãÉî¶ÈѧϰЧ¹ûµÄÓÅÒìÌåÏÖÖ÷ÒªÔ´ÓÚ3¸öÔµ¹ÊÔ­ÓÉ£º1£©Öð²ãµÄÊý¾Ý´¦Öóͷ£ £»2£©ÌØÕ÷µÄÄÚ²¿±ä»»¡£3£©×㹻ǿµÄÄ£×ÓÖØÆ¯ºó¡£µ«Í¬Ê±»ùÓÚÉñ¾­ÍøÂçµÄÉî¶ÈѧϰҲ±£´æÈý¸öÎÊÌ⣺1£©ÈÝÒ×¹ýÄâºÏ¡£2£©ºÜÄÑѵÁ·¡£3£©ÅÌË㿪Ïú´ó¡£ÆñÂÛÏÖʵӦÓÃÕÕ¾ÉѧÊõÑо¿µÄ²ãÃæ £¬¶¼ÆÚÍûµÃ³öÑо¿·ÇÉñ¾­ÍøÂçµÄÉî¶ÈѧϰҪÁì £¬Óɴ˶øÌá³öÁË¡°Deep Forests¡±µÄ¿´·¨¡£¡°Deep Forests¡±Ê¹ÓÃÁË¡°Random Forest¡± £¬Äܹ»ÊµÏÖÖð²ã´¦Öóͷ£ £¬»ñµÃеÄÌØÕ÷¡£ÔÚÏÖʵµÄÌ×ÏÖ°¸ÀýÖÐ £¬ÆäÄ£×ÓµÄÌåÏÖÓÅÓÚÂß¼­»Ø¹éºÍDNN¡£ÎªÁ˽øÒ»²½Ö¤ÊµËüµÄÓÅÔ½ÐÔ £¬¸ß½ÌÊÚ¸ø³öÁËDeep ForestµÄÌØÊâÇéÐÎ £¬²¢Õë¹ØÓÚÖª×ãÌØ¶¨Ìõ¼þµÄÄ£×Ó £¬¸ø³ö²î±ð±äÌåϵÄforestsµÄÒ»ÖÂÐÔ֤ʵºÍÊÕÁ²ËÙÂÊ֤ʵ £¬¶ÔÉî¶ÈѧϰµÄ½¨Ä£·½·¨ÌṩÁ˺ܺõÄÖ¸µ¼Æ«Ïò¡£


¡°ÈýÁ¦¡±Æë·¢¡ª¡ªÌ½ÌÖÉî¶ÈѧϰµÄÀíÂÛÐÔ×Ó

±¨¸æÎÊÌ⣺Deep learning: from theory to algorithm

±¨¸æÈË£º ÍõÁ¢Íþ £¬±±¾©´óѧÐÅÏ¢¿ÆÑ§ÊÖÒÕѧԺ

11D77


ÍõÁ¢Íþ½ÌÊÚÔÚ±¨¸æÖÐÖØµãÏÈÈÝÁËÆäÍŶӽüÆÚÔÚÉî¶ÈѧϰÀíÂÛ·½ÃæµÄÑо¿Ð§¹û¼°Æä¶ÔËã·¨Éè¼ÆµÄÖ¸µ¼¡£ËûÒÔΪÖ÷Òª¿ÉÒÔ´ÓÈý¸ö·½ÃæÑо¿Éî¶ÈѧϰµÄÀíÂÛÐÔ×Ó£ºÄ£×ÓµÄÌåÏÖÄÜÁ¦¡¢ÔÚ²âÊÔ¼¯Éϵķº»¯ÄÜÁ¦ÒÔ¼°ÔÚѵÁ·¼¯ÉϵÄÓÅ»¯ÐÔ×Ó¡£¹ØÓÚÉî¶ÈÉñ¾­ÍøÂçÌåÏÖÄÜÁ¦µÄÑо¿ £¬Íõ½ÌÊÚ¼°ÆäÍŶÓ֤ʵÎúÔÚÍøÂç¿í¶ÈÑÏ¿á´óÓÚÊäÈëά¶ÈÒÔ¼°Éî¶È¿ÉÒÔÎÞÏÞÔöÌíµÄÌõ¼þÏ £¬Éî¶ÈÉñ¾­ÍøÂçÊÇÒ»¸öUniversal Approximator £¬ÄÜÒÔí§Ò⾫¶ÈÆÈ½üÒ»¸ö¿É²âº¯Êý¡£¶ø¹ØÓÚÉî¶ÈѧϰµÄ·º»¯ÄÜÁ¦µÄÑо¿ £¬Íõ½ÌÊÚÌåÏÖ £¬ËäÈ»Éî¶ÈÉñ¾­ÍøÂçÊÇÒ»¸ö¹ý²ÎÊý»¯µÄÄ£×Ó £¬µ«ÈÔÈ»ÌåÏÖ³öºÜÇ¿µÄ·º»¯ÄÜÁ¦ £¬Òò´Ë¾­µäµÄͳ¼ÆÑ§Ï°ÀíÂÛ¿ÉÄܲ»ÔÙÊÊÓá£Íõ½ÌÊÚ»®·Ö´ÓÄ£×ÓÖØÆ¯ºóºÍÑ·üç㷨µÄ½Ç¶ÈÚ¹ÊÍÁËÉî¶ÈѧϰµÄ·º»¯ÐÔÄÜ £¬²¢¸ø³öÁËÔÚʹÓÃSGLDËã·¨µÄÌõ¼þÏ £¬Éî¶ÈѧϰµÄ·º»¯Îó²îÉϽç¡£×îºó £¬¹ØÓÚÉî¶ÈѧϰµÄÓÅ»¯Ëã·¨µÄÑо¿ £¬Íõ½ÌÊÚ֤ʵÎúÔÚÉî¶ÈÍøÂç³ä·Ö¿íÒÔ¼°Æä²ÎÊý³õʼ»¯µÄ»úÖÆÊDZ»È«ÐÄÉè¼ÆµÄÌõ¼þÏ £¬´ÓËæ»ú³õʼµã³ö·¢ £¬Ê¹Óã¨Ëæ»ú£©ÌݶÈϽµ·¨¿ÉÒÔÒԺܴóµÄ¸ÅÂÊÕÒµ½È«¾Ö×îÓŵã £¬²¢ÇÒÄִܵïÖ¸ÊýÊÕÁ²¡ £»ùÓÚ´ËÀíÂÛЧ¹û £¬Íõ½ÌÊÚÓëÆäÍŶÓÉè¼ÆÁ˶þ½×ÓÅ»¯Ëã·¨¡ª¡ªGram-Gauss-NewtonËã·¨ £¬ÓÃÒÔѵÁ·Éî¶ÈÉñ¾­ÍøÂç¡£¸ÃËã·¨¾ßÓжþ½×ÊÕÁ²ËÙÂÊ £¬²¢ÇÒÿ´Îµü´úµÄÅÌËãÖØÆ¯ºóÓëSGDÏà·Â¡£


ÆÊÎöAIÀ˳±µÄÄ»ºóÒýÇæ¡ª¡ªÉî¶È¾í»ýÉñ¾­ÍøÂç

±¨¸æÎÊÌ⣺Progressive Principle Component Analysis for Compressing Deep Convolutional Neural Networks

±¨¸æÈË£ºÖܾ² £¬ÖйúÈËÃñ´óѧͳ¼ÆÑ§Ôº

B758

Öܾ²½ÌÊÚÔòÒÔÑо¿ÄîÍ·ÒýÈë £¬¼òÎöÁË×÷ΪÉî¶Èѧϰ¾­µäÍøÂçµÄ¾í»ýÉñ¾­ÍøÂçËæ×ŲãÊý¼ÓÉî £¬¾í»ýµÄsize¼õС £¬µ«¸öÊýѸËÙÔöÌí £¬´Ó¶øµ¼ÖÂÈ¨ÖØ¾ØÕówµÄά¶È¼«¸ßµÄÎÊÌâ £»Í¬Ê±ÃæÁÙComputationºÍStorageµÄÄÑÌâ £¬Ò²ÄÑÒÔÖ±½Ó°²ÅÅÔÚÒÆ¶¯¶Ë¡ £»ùÓÚ´Ë £¬ÖܽÌÊÚÌá³öÁËÒ»ÖÖ½¥½øÖ÷ÒòËØÆÊÎö(PPCA)ÒªÁì¶Ô¾í»ý¾ÙÐнµÎ¬À´Ñ¹ËõÉî¶È¾í»ýÉñ¾­ÍøÂç¡£Ïêϸ¶øÑÔ £¬´ÓÒ»¸öÔ¤ÏÈÖ¸¶¨µÄ²ã×îÏÈ £¬Öð²½Òƶ¯µ½×îºóµÄÊä³ö²ã¡£¹ØÓÚÿ¸öÄ¿µÄ²ã £¬PPCA½«Ã¿Ò»´ÎµÄ¾í»ý²ãreshape³ÉÒ»¸ö¾ØÕóºó £¬Ñ¡ÔñÀۼƷ½²îТ˳ÂÊ×î¸ßµÄ¼¸¸ö £¬¾ÙÐÐPCA½µÎ¬ £¬Õ⽫ÏÔÖøïÔÌ­Ä¿½ñ²ãÖеÄÄÚºËÊýÄ¿¡£½µÎ¬ºó £¬Ä¿½ñ²ãµÄshape±¬·¢¸Ä±ä £¬Ó°ÏìÁËÏÂÒ»¸ö¾í»ý²ã £¬ÒªÏȶÔÏÂÒ»²ãµÄshape¾ÙÐÐÐÞÕýºóÔÙ¾ÙÐÐPCA½µÎ¬ £¬ÓÉÓÚÄ¿½ñ²ãÖÐʹÓõÄÄÚºËÊýÄ¿¾öÒéÁËÏÂÒ»²ãµÄͨµÀÊýÄ¿ £¬ÓÃÓÚÏÂÒ»²ãµÄͨµÀÒ²´ó´óïÔÌ­ £¬Õû¸öÄ£×ӽṹ¿ÉÒÔ±»´ó·ùѹËõ £¬²ÎÊýµÄÊýÄ¿ºÍÍÆÀí±¾Ç®¶¼¿ÉÒÔ´ó·ù½µµÍ¡£ÖܽÌÊÚ½«Æä³ÆÖ®Îª¡°Progressive Principle Component Analysis¡±¡£ÖܽÌÊÚµÄÑо¿ÖÐÔÚһЩ¾­µäµÄCNNs (AlexNet, VGGNet, ResNetºÍMobileNet)ºÍ»ù×¼Êý¾Ý¼¯ÉÏÆÀ¹ÀÁ˸ÃÒªÁìµÄÓÐÓÃÐÔ¡£ÊµÑéÅú×¢ £¬ÔÚÄ³Ð©ÌØ¶¨Ä£×ÓÀï £¬PPCAµÄÄ£×ÓѹËõÂÊ´ó¡¢Õ¹ÍûËÙÂÊ¿ì £¬²¢ÇÒ¾«¶ÈûÓÐÌ«´óËðʧ¡£µ«PPCAÎÞ·¨×öµ½ÔÚËùÓеÄÄ£×ÓÖж¼Áè¼ÝÆäËûµÄ¾ºÕùµÐÊÖ¡£×îºóÖܽÌÊÚÖ¸³ö £¬ÏÖÔÚPPCAûÓÐ˼Á¿ÔõÑùѡȡ×îÓŵĵ÷Àí²ÎÊý £¬Òò´ËÉÐÓнøÒ»²½µÄÑо¿¿Õ¼ä¡£

ÒÔÐÅÏ¢ÊÖÒÕΪ´ú±íµÄµÚËĴι¤Òµ¸ïÃüÕýÍÆ¶¯×ÅÎÒÃÇ×ßÈëÈ˹¤ÖÇÄÜʱ´ú £¬ÅãͬȫÇòµÚÎå´Î¹¤Òµ×ªÒÆ £¬´óÊý¾ÝÕýÔÚ³¯×ÅÉú²úÒªËØµÄÐÎ̬Ñݽø £¬Éî¶ÈѧϰÊǽüÄêÀ´Ëæ×ÅÈ˹¤ÖÇÄÜÐËÆð¶ø³ö¾µÂÊ×î¸ßµÄÃû´ÊÖ®Ò» £¬Óëͳ¼ÆÑ§µÄÁ¬ÏµÓëÅö×²ÊÆ±Ø»á²Á³öеĻ𻨡£±¾´Î×êÑлá¶Ôͳ¼ÆÑ§¿ÆÓëÉî¶ÈѧϰµÄÁ¬ÏµÑо¿ÓëÉú³¤Æðµ½ÁËÆð¾¢×÷Óà £¬Í¬Ê±Ò²Ôö½øÁËÏà¹ØÁìÓòר¼ÒѧÕßÃÇÖ®¼äµÄ½»Á÷Óë̽ÌÖ £¬ÎªÉú³¤Í³¼ÆÊý¾Ý¿ÆÑ§Á¢Ò콨ÉèÁËÓÅÒìµÄƽ̨ £¬Óë»áʦÉúÓëѧÕß¶¼ÌåÏÖ»ñÒæ·Ëdz¡£

D824


¡¾Î°Òײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿Ïµ¡¿

ΰÒײ©ÉÌÎñͳ¼ÆÓë¾­¼Ã¼ÆÁ¿Ïµ´«³Ð±±¾©´óѧÃ÷±æÉÆË¼¡¢º£Äɰٴ¨µÄóÆÑ§¾«Éñ £¬±ü³ÖΰÒײ©ÖÎÀíѧԺ¡°´´Á¢ÖÎÀí֪ʶ £¬×÷ÓýÉ̽çÊ×ÄÔ £¬Íƶ¯Éç»áǰ½ø¡±µÄÀúʷʹÃü £¬ÒÔ¡°Î°Òײ©Í·ÄÔÁ¦¡±ÎªÃª £¬¾Û½¹Ò»ÏµÁÐÉÌÎñͳ¼ÆÁìÓòÖØ´ó¿ÎÌâÕö¿ªÑо¿Ì½ÌÖ £¬ÖÂÁ¦ÓÚÍÆ¸ÐÈ˹¤ÖÇÄÜÓëͳ¼ÆÑ§ÀíÂ۵Ľ»Á÷ÓëÉú³¤¡£ÖµÑ§Ôº½¨Éè35ÖÜÄêÖ®¼Ê £¬¼¯Î°Òײ©Ñ§ÕßÖ®ÖÇ»Û £¬½¨Éî¶È½»Á÷֮ƽ̨ £¬Í¨Ì«¹ýÏíÌÖÂÛѧÊõÑо¿Ð§¹û £¬ÖúÁ¦Ñ§ÊõÉú³¤ £¬Íƶ¯Éç»áǰ½ø¡£


ÉÏÒ»Ìõ£º±±´óΰÒײ©¸ßÖª´òÔì¡°Èý¾«¡±¹¤»áÆ·ÅÆ
ÏÂÒ»Ìõ£ºÕâ¿ÉÄÜÊÇ×îÎÂܰ¡¢×îÌØ±ðµÄÐÂÊéÐû²¼¡ª¡ªÀ÷ÒÔÄþ½ÌÊÚ¾ÅÊ®ÖÜË껪µ®Îļ¯Ðû²¼»áôß´Ó½ÌÁùÊ®ÎåÖÜÄê»î¶¯
·ÖÏí

ghalumni@gsm.pku.edu.cn

±±¾©Êк£µíÇøÒúÍ԰·5ºÅΰÒײ©2ºÅÂ¥501ÊÒ

?2017 ΰÒײ© °æÈ¨ËùÓÐ    ¾©ICP±¸05065075-1
¡¾ÍøÕ¾µØÍ¼¡¿¡¾sitemap¡¿